8,291 research outputs found

    Large orbital magnetic moments in carbon nanotubes generated by resonant transport

    Full text link
    The nonequilibrium Green's function method is used to study the ballistic transport in metallic carbon nanotubes when a current is injected from the electrodes with finite bias voltages. We reveal, both analytically and numerically, that large loop currents circulating around the tube are induced, which come from a quantum mechanical interference and are much larger than the current along the tube axis when the injected electron is resonant with a time-reversed pair of degenerate states, which are, in fact, inherent in the zigzag and chiral nanotubes. This results in large orbital magnetic moments, making the nanotube a molecular solenoid.Comment: 5 pages, 4 figures; typos correcte

    Theory of rigid-plane phonon modes in layered crystals

    Full text link
    The lattice dynamics of low-frequency rigid-plane modes in metallic (graphene multilayers, GML) and in insulating (hexagonal boron-nitride multilayers, BNML) layered crystals is investigated. The frequencies of shearing and compression (stretching) modes depend on the layer number {\EuScript N} and are presented in the form of fan diagrams. The results for GML and BNML are very similar. In both cases only the interactions (van der Waals and Coulomb) between nearest-neighbor planes are effective, while the interactions between more distant planes are screened. A comparison with recent Raman scattering results on low-frequency shear modes in GML [Tan {\it et al.}, arXiv:1106.1146v1 (2011)] is made. Relations with the low-lying rigid-plane phonon dispersions in the bulk materials are established. Master curves which connect the fan diagram frequencies for any given {\EuScript N} are derived. Static and dynamic thermal correlation functions for rigid-layer shear and compression modes are calculated. The results might be of use for the interpretation of friction force experiments on multilayer crystals

    The Effect of 45{\deg} Grain Boundaries and associated Fe particles on Jc and resistivity in Ba(Fe0.9Co0.1)2As2 Thin Films

    Full text link
    The anisotropy of the critical current density Jc depends in general on both the properties of the flux lines (such as line tension, coherence length and penetration depth) and the properties of the defects (such as density, shape, orientation etc.). Whereas the Jc anisotropy in microstructurally clean films can be scaled to an effective magnetic field containing the Ginzburg-Landau anisotropy term, it is in general not possible (or only in a limited field range) for samples containing extended defects. Here, the Jc anisotropy of a Co-doped BaFe2As2 sample with 45{\deg} [001] tilt grain boundaries (GBs), i.e. grain boundaries created by 45{\deg} in-plane rotated grains, as well as extended Fe particles is investigated. This microstructure leads to c-axis correlated pinning, both due to the GBs and the Fe particles and manifests in a c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full Jc anisotropy is fitted successfully with the vortex path model. The results are compared to a sample without GBs and Fe particles. 45{\deg} GBs seem to be good pinning centers rather than detrimental to current flow.Comment: 8 pages, 7 figures, CEC-ICMC 2013 proceeding, accepted for publication in Advances in Cryogenic Engineering (Materials

    A Low Frequency Survey of the Galactic Plane Near l=11 degrees: Discovery of Three New Supernova Remnants

    Full text link
    We have imaged a 1 deg^2 field centered on the known Galactic supernova remnant (SNR) G11.2-0.3 at 74, 330, and 1465 MHz with the Very Large Array radio telescope (VLA) and 235 MHz with the Giant Metrewave Radio Telescope (GMRT). The 235, 330, and 1465 MHz data have a resolution of 25 arcsec, while the 74 MHz data have a resolution of 100 arcsec. The addition of this low frequency data has allowed us to confirm the previously reported low frequency turnover in the radio continuum spectra of the two known SNRs in the field: G11.2-0.3 and G11.4-0.1 with unprecedented precision. Such low frequency turnovers are believed to arise from free-free absorption in ionized thermal gas along the lines of site to the SNRs. Our data suggest that the 74 MHz optical depths of the absorbing gas is 0.56 and 1.1 for G11.2-0.3 and G11.4-0.1, respectively. In addition to adding much needed low frequency integrated flux measurements for two known SNRs, we have also detected three new SNRs: G11.15-0.71, G11.03-0.05, and G11.18+0.11. These new SNRs have integrated spectral indices between -0.44 and -0.80. Because of confusion with thermal sources, the high resolution (compared to previous Galactic radio frequency surveys) and surface brightness sensitivity of our observations have been essential to the identification of these new SNRs. With this study we have more than doubled the number of SNRs within just a 1 deg^2 field of view in the inner Galactic plane. This result suggests that future low frequency observations of the Galactic plane of similar quality may go a long way toward alleviating the long recognized incompleteness of Galactic SNR catalogs.Comment: 31 pages, 9 figures. Figure 7 is in color. Accepted to A

    Gamma-ray Flares and VLBI Outbursts of Blazars

    Full text link
    A model is developed for the time dependent electromagnetic - radio to gamma-ray - emission of active galactic nuclei, specifically, the blazars, based on the acceleration and creation of leptons at a propagating discontinuity or {\it front} of a Poynting flux jet. The front corresponds to a discrete relativistic jet component as observed with very-long-baseline-interferometry (VLBI). Equations are derived for the number, momentum, and energy of particles in the front taking into account synchrotron, synchrotron-self-Compton (SSC), and inverse-Compton processes as well as photon-photon pair production. The apparent synchrotron, SSC, and inverse-Compton luminosities as functions of time are determined. Predictions of the model are compared with observations in the gamma, optical and radio bands. The delay between the high-energy gamma-ray flare and the onset of the radio is explained by self-absorption and/or free-free absorption by external plasma. Two types of gamma-ray flares are predicted depending on pair creation in the front.Comment: 11 pages, submitted to ApJ. 10 figures can be obtained from R. Lovelace by sending postal address to [email protected]

    CMB component separation by parameter estimation

    Get PDF
    We propose a solution to the CMB component separation problem based on standard parameter estimation techniques. We assume a parametric spectral model for each signal component, and fit the corresponding parameters pixel by pixel in a two-stage process. First we fit for the full parameter set (e.g., component amplitudes and spectral indices) in low-resolution and high signal-to-noise ratio maps using MCMC, obtaining both best-fit values for each parameter, and the associated uncertainty. The goodness-of-fit is evaluated by a chi^2 statistic. Then we fix all non-linear parameters at their low-resolution best-fit values, and solve analytically for high-resolution component amplitude maps. This likelihood approach has many advantages: The fitted model may be chosen freely, and the method is therefore completely general; all assumptions are transparent; no restrictions on spatial variations of foreground properties are imposed; the results may be rigorously monitored by goodness-of-fit tests; and, most importantly, we obtain reliable error estimates on all estimated quantities. We apply the method to simulated Planck and six-year WMAP data based on realistic models, and show that separation at the muK level is indeed possible in these cases. We also outline how the foreground uncertainties may be rigorously propagated through to the CMB power spectrum and cosmological parameters using a Gibbs sampling technique.Comment: 20 pages, 10 figures, submitted to ApJ. For a high-resolution version, see http://www.astro.uio.no/~hke/docs/eriksen_et_al_fgfit.p

    DA495 - an aging pulsar wind nebula

    Full text link
    We present a radio continuum study of the pulsar wind nebula (PWN) DA 495 (G65.7+1.2), including images of total intensity and linear polarization from 408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations with the Effelsberg 100-m Radio Telescope. Removal of flux density contributions from a superimposed \ion{H}{2} region and from compact extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz, with a spectral index α=0.45±0.20{\alpha}={-0.45 \pm 0.20} below the break and α=0.87±0.10{\alpha}={-0.87 \pm 0.10} above it (Sννα{S}_\nu \propto{\nu^{\alpha}}). The spectral break is more than three times lower in frequency than the lowest break detected in any other PWN. The break in the spectrum is likely the result of synchrotron cooling, and DA 495, at an age of \sim20,000 yr, may have evolved from an object similar to the Vela X nebula, with a similarly energetic pulsar. We find a magnetic field of \sim1.3 mG inside the nebula. After correcting for the resulting high internal rotation measure, the magnetic field structure is quite simple, resembling the inner part of a dipole field projected onto the plane of the sky, although a toroidal component is likely also present. The dipole field axis, which should be parallel to the spin axis of the putative pulsar, lies at an angle of {\sim}50\degr east of the North Celestial Pole and is pointing away from us towards the south-west. The upper limit for the radio surface brightness of any shell-type supernova remnant emission around DA 495 is Σ1GHz5.4×1023\Sigma_{1 GHz} \sim 5.4 \times 10^{-23} OAWatt m2^{-2} Hz1^{-1} sr1^{-1} (assuming a radio spectral index of α=0.5\alpha = -0.5), lower than the faintest shell-type remnant known to date.Comment: 25 pages, accepted by Ap

    V2:Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz

    Full text link
    The performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10 MJ is described. The solid deuterium converter with a volume of V=160 cm3 (8 mol), which is exposed to a thermal neutron fluence of 4.5x10^13 n/cm2, delivers up to 550 000 UCN per pulse outside of the biological shield at the experimental area. UCN densities of ~ 10/cm3 are obtained in stainless steel bottles of V ~ 10 L resulting in a storage efficiency of ~20%. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.Comment: 23 pages, 8 figure
    corecore